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Abstract. Heterogeneous nucleation of melt on dislocations in superheated crystals is analysed to
give a superheating limit for massive heterogeneous nucleation on dislocations, which is evidently
lower than the recently developed limit for homogeneous melting. Even for a crystal with a low
dislocation density of 102 cm−2 of screw and edge unit dislocations, the associated threshold
temperatures are only 1.068 Tm and 1.095 Tm respectively for various metals. It is also notable that
the effect of dislocation density on this temperature is limited by the sharp decrease in the critical
heterogeneous nucleation energy with increasing temperature.

Melting experiments of crystals have shown that if heterogeneous nucleation on the free
surface can be avoided, crystals can be superheated [1–4]. Various superheating limits for
crystals have been proposed, such as those defined by the entropy catastrophe [5], the volume
catastrophe [6] and the rigidity catastrophe [7]. For example, Fetch and Johnson [5] have
extended the Kauzmann paradox for glass transition [8] to superheated crystals, arguing that
the crystal will melt at a critical temperature where the entropy of the superheated crystal
equals that of the liquid phase. Thereby, they have established a thermodynamic limit of the
isoentropic temperature at 1.38 Tm for Al (where Tm is the equilibrium melting point) [5].

However, the actual amount of superheating with respect to the equilibrium melting
point will be defined by kinetic considerations, even when the thermodynamic driving
force is substantial [5, 9]. Recently, Lu and Li [9] proposed a new instability limit related
to catastrophic homogeneous nucleation of melt in superheated crystals based on kinetic
considerations. They have found [9] that a massive homogeneous nucleation catastrophe
occurs in superheated crystals at a critical temperature of 1.2 Tm, which is lower than the above
instability limits [5–7]. This was based on the assumption that heterogeneous nucleation at
grain boundaries, dislocations and free surfaces can be avoided. However, the superheating
observed experimentally in metallic crystals is typically 1.10 Tm, which is evidently still below
this homogeneous kinetic limit [9, 10].

While heterogeneous nucleation on the surface and on grain boundaries can be avoided
by appropriate surface coating [1–3] and by selecting of a single crystal respectively,
heterogeneous nucleation on dislocations is not easy to eliminate. Even the most carefully
annealed pure metals will have a dislocation density of 102 cm−2 or higher [11]. Early
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work by Glicksman and Vold [12] examined the case of heterophase dislocations. Later,
from a thermodynamic point of view, Cotterill [13] suggested that melting could be based
on dislocation multiplication. From a kinetic point of view, this paper is to describe the
effects of heterogeneous nucleation of melt on dislocations and of the dislocation density on
the superheating limit in superheated crystals in which heterogeneous nucleation on the free
surface and on the grain boundaries are avoided. It is found that in a superheated crystal a
massive heterogeneous nucleation catastrophe on dislocations occurs at a critical temperature
T H
m , which is lower than the recently established homogeneous instability limit T K

m [9].
It has long been known that dislocations can act as heterogeneous sites for nucleation of

precipitates in solids [11, 14]. Cahn [14] has proposed a model to estimate the effectiveness
of a dislocation as a catalyst for nucleation of solid phases. Similarly, it is assumed here that a
cylindrical liquid nucleus with a radius r , with cross-section perpendicular to the dislocation
line, lies along the core of the dislocation, and that the matrix is an isotropic elastic substance.
The energy change in forming this liquid cylinder consists of three terms, e.g. (a) a dislocation
strain energy term, (b) a volume energy term including the free energy change and the strain
energy due to volume change from solid to liquid and (c) a surface energy term. The dislocation
strain energy term and volume energy terms favour nucleation whereas the surface energy term
opposes it. The free energy change per unit length (�Gc) of forming a cylindrical liquid nucleus
is then written as

�Gc = −A ln r + 2πγ r − πf r2 + c (1)

where A = (µb2/4π(1 − ν)) for edge dislocations and µb2/4π for screw dislocations, c is
a constant representing the non-elastic energy in the dislocation core, µ is the elastic shear
modulus, b is the burger’s vector, ν is the Poisson ratio; γ is the interfacial energy of the
solid/liquid interface; f = −(�Gv + �E) where �Gv = �Hm(Tm − T )/Tm is the Gibbs
free energy difference between the liquid and crystal (�Hm denotes the fusion enthalpy), and
�E = 18EyKε2

0f0/(4Ey + 3K), according to Allen et al [15], is the change in strain energy
density resulting from the volume change upon melting where Ey is the Young’s modulus
and K is the bulk modulus for the solid, and f0 is a factor to account for the effect of a free
surface on the strain energy density which is taken to be 1.0 in the present case. ε0 is the
hydrostatic strain associated with the fractional volume change (�V/V ) during melting, i.e.
ε0 = 1

3�V/V .
When the parameter α(= 2Af/πγ 2) is less than 1, a minimum in �Gc (equation (1))

exists at a value of r0, given by

r0 = γ

2f

[
1 −

√
1 − 2Af

πγ 2

]
. (2)

This is interpreted as a sub-critical metastable cylinder of the liquid phase which initially
surrounds the dislocation line. Such a cylinder with a radius of r0 will be taken as the energetic
starting point for nucleation. A local fluctuation which thickens the liquid phase requires
energy. Beyond a certain size the volume energy will exceed the other terms and continued
growth will result again in a lowering of energy. The maximum of the energy that must be
supplied will depend on the shape and length of the nucleus along the dislocation where the
fluctuation occurs. If we assume that the radius r(z) of the liquid nucleus is a function of
distance, z, along the dislocation line, the free energy, �Gh, for the formation of this liquid
nucleus on the dislocation line is given by [14]

�Gh(T ) =
∫ +∞

−∞

[
−A ln

r

r0
+ 2π(r

√
1 + r ′2 − r0) − πf (r2 − r2

0 )

]
dz (3)
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where r ′ = dr/dz. The liquid nucleus is at a saddle point in �Gh(T ), that is, its shape and
size are determined by the conditions that �Gh is a minimum and a maximum in energy with
respect to changes in shape and size respectively. Thereby, to determine the shape and size
of the nucleus, the Euler–Lagrange equation [16] is applied to the integral in equation (3).
Solving this equation yields values for r(z) for which the integral is an extreme in �Gh(t)

(either a maximum, minimum or saddle point), under the following boundary conditions that

if r = r0 r ′ = 0 (4a)

if z = 0 r ′ = 0. (4b)

Letting r/r0 = 1 + y, z/r0 = x, (1 − α) = β2, the solution r(z) can be written explicitly as

dy

dx
=

√
q2 − 1 (5)

where

q(y) = 1 + y

1 + [(1 + β)/2] ln(1 + y) + 1
4 (1 − β)y(2 + y)

. (6)

Substituting equation (5) into equation (3), the critical free energy change for nucleation of
the liquid phase on a dislocation, �G∗

h(T ), can be obtained as

�G∗
h(T ) = πγ 3

f 2
(1 − β)2

∫ ε

0
(1 + y)(1 − q−2)1/2 dy (7)

where the upper limit ε is determined by q(ε) = 1.
Figure 1(a) shows the temperature dependence of the critical free energy�G∗

h of formation
of a liquid nucleus on a screw or an edge dislocation together with that for homogeneous
nucleation of a spherical liquid nucleus for pure element Al. It shows that at low temperature,
the critical energy of heterogeneous nucleation on a dislocation is close to that of the
homogeneous nucleation. This is because when the critical energy is large the term due to the
strain energy of the dislocation that favours nucleation on it is too small compared with that due
to the volume free energy. However, as the temperature increases, the critical heterogeneous
free energy drops sharply due to the assistance of dislocations.

The heterogeneous nucleation rate of liquid is a function of temperature consisting of a
driving force term and a diffusivity term,

ID = I0 exp

(
− �G∗

h(T )

kT

)
exp

(
− Q

kT

)
(8)

where Q is the activation energy for atomic diffusion in the crystal lattice, and I0 is a prefactor
which can be approximated by I0 = n1/3L(kT /h) [14], where n is the number of atoms in
a unit volume, L is the dislocation line length per unit volume, k is Boltzmann’s constant
and h is Planck’s constant. Figure 1(b) shows the calculated results of nucleation rate of
melting on dislocations as a function of temperature in pure Al, compared with that of the
nucleation rate of homogeneous melting for a perfect aluminium crystal. The result shows that
the critical superheating temperatures required to give one nucleus per second per cm3 under
the conditions of heterogeneous nucleation of melting on dislocations in Al with a dislocation
density of 102 cm−2 were 1027 K and 1044 K for unit screw and edge dislocations respectively,
compared with 1127 K obtained for homogeneous nucleation [9], corresponding to a drop from
1.208 to 1.101 and 1.119 Tm for Al. On the other hand the calculation of nucleation rate in
equation (8) did not consider the effect of the presence of dislocations on the diffusion process,
which will change the diffusion in the solid [17]. However, there is no doubt that equation (8)
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Figure 1. (a) Critical free energy change for nucleation of melting, homogeneously and
heterogeneously on screw or edge dislocations as a function of temperature for pure aluminium;
(b) rate of homogeneous and heterogeneous on screw and edge dislocations for melting of a
superheated Al crystal. (S.d. and e.d. denote screw dislocation and edge dislocation respectively.)
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Table 1. Results of calculated absolute and relative critical superheating required to give one
nucleus per second per cm3 for homogeneous and heterogeneous nucleation of melting in various
metals.

Dislocation density L (cm−2)

L = 102 L = 106 L = 1010

T
H(α=1)
m

Metal Structure Tm (K) T K
m (K) (K) T H

m �Tr T H
m �Tr T H

m �Tr

Pb f.c.c. 601 776 699 685 0.140 683 0.136 681 0.133
Al f.c.c. 933 1127 1047 1044 0.119 1043 0.118 1042.6 0.117
Ag f.c.c. 1234 1455 1329 1324 0.073 1323 0.072 1322 0.071
Cu f.c.c. 1356 1592 1461 1455 0.073 1454 0.072 1453 0.072
Ni f.c.c. 1725 2091 1887 1878 0.089 1876 0.088 1874 0.086
Fe b.c.c. 1809 2191 1982 1962 0.085 1959 0.083 1957 0.082
Zn h.c.p. 693 905 774 772 0.114 771.4 0.113 771 0.113
Mg h.c.p. 922 1087 991 987 0.07 986 0.069 985 0.068

Note: �Tr = �T H
m /Tm.

will give us a good estimation on nucleation rate since the dominant effect of dislocation is in
reducing the critical nucleation energy, rather than in modifying the diffusion process.

The calculated critical superheating limits of several typical elemental metals due to
heterogeneous nucleation on dislocations with densities of 102 and 1010 cm−2 are listed
in table 1. The Burgers vectors, �b of a unit dislocation are (a0/2)〈110〉, (a0/2)〈111〉 and
(a0/2)〈112̄0〉 [18] for fcc, bcc and hcp crystals respectively, where a0 is the lattice constant.
Unit dislocation is used because it has the highest dislocation strain energy compared with
partical dislocation in real crystal, which will give lower superheating limits. Table 1
shows that for the elements listed in the table the relative critical superheating �Tr (=
(T H

m − Tm)/Tm) for heterogeneous nucleation on unit screw and edge dislocation are found to
be around 0.068(±0.023) Tm and 0.095(±0.026) Tm respectively, less than half of the relative
superheating obtained for the homogeneous nucleation limit in the similar group of elements
[9]. This result is lower than previously established superheating limits and is consistent with
the superheating observed experimentally in metallic crystals, typically 1.10 Tm [9].

Our results in table 1 also show that the dislocation density, L, has little effect on
superheating limit. For example, it was found that the superheating of Pb decreased by 4 K
from 685 K for an edge dislocation density of 102 cm−2 to 681 K with a dislocation density
of 1010 cm−2. One of the explanations from equation (8) is that the critical heterogeneous
nucleation rate is determined by the prefactor and the critical nucleation energy in the
exponential term. Since the latter drops sharply with slight increase in temperature (figure 1(a)),
the exponential term containing the critical nucleation energy is effectively the dominant factor
and the increase in dislocation density is more than compensated for by the decrease in the
energy term. This indicates that the effect of dislocations on melting is mainly in reducing
the activation energy for nucleation and the dislocation density has little effect on the melting
temperature.

From equations (1) and (2), if α (= 2Af/πγ 2) is larger than 1, it is evident that there
will be no energy barrier for the formation of a cylindrical liquid nucleus around a dislocation,
which indicates that the sum of the first two terms in equation (1) increases more rapidly
than the surface energy term. A critical superheating limit T H(α=1)

m for this condition can be
calculated when α = 1. The result in fact is the ultimate limit for heterogeneous nucleation of
melting on dislocations, since, above this temperature, dislocations are so effective that there
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will be no energy barrier for nucleation of liquid on them, just as for the free surface. However,
from table 1 it is seen that the values of T H(α=1)

m for the selected elements are very close to
T H
m , which gives only a slight increase of between 1 and 20 K.

It should be noted that the assumption made in the present model that the liquid nucleus
initially nucleates along the cores of dislocations is supported by the molecular dynamics
simulation work by Huang et al [19]. Their results showed that the nucleation barrier for
the liquid is much smaller near the dislocation cores than in the bulk and melting is initiated
systematically in the region near the cores for their studied system (copper). In conclusion, we
have analysed the heterogeneous nucleation of melt on dislocations in superheated crystals.
A stability limit for massive heterogeneous nucleation on dislocations is found to be lower
than the recently developed limit for homogeneous melting. Even for a crystal with a low
dislocation density of 102 cm−2, the associated threshold temperatures are only 1.068 and
1.095 Tm for screw and edge dislocations respectively in various metals. It is also notable that
the effect of dislocation density on this temperature is limited by the sharp decrease in the
critical heterogeneous nucleation energy with increasing temperature.
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